ENGINEERING, BACHELOR OF SCIENCE IN ENGINEERING: MECHATRONICS SPECIALIZATION

The Engineering program is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org (http://www.abet.org/), under the General Criteria.

Specific Admission Requirements

Applying as an Incoming Freshman

In order to be considered for admission to the BSE or BSIE as an incoming freshman, a student must:

- Be placed into MATH 126 Calculus \& Analytic Geometry I (GT-MA1) (5 c.h.), or higher.
- Have a high school GPA of 3.25 or higher on a 4.0 scale.

The number of students admitted to the BSE or the BSIE as incoming freshmen is limited. Priority is given to students with the highest GPA's and ACT/SAT scores. A student admitted as an incoming freshman may continue in the BSE or BSIE program as a sophomore if he or she completes the required first year engineering courses (EN 101 Introduction to Engineering (2 c.h.), EN 103 Problem Solving for Engineers (3 c.h.), and EN 107 Engineering Graphics (2 c.h.)) with a B or better in each course. If a student admitted as an incoming freshman does not meet the requirements to continue in the program as a sophomore, he or she is eligible to apply as a sophomore, as described below.

Applying After Completing Required First-Year Courses

A student (including a transfer student) who does not receive admission as a freshman must complete the required first year courses (EN 101 Introduction to Engineering (2 c.h.), EN 103 Problem Solving for Engineers (3 c.h.), EN 107 Engineering Graphics (2 c.h.), ENG 101 Rhetoric \& Writing I (GT-CO1) (3 c.h.), ENG 102 Rhetoric \& Writing II (GT-CO2) (3 c.h.), MATH 126 Calculus \& Analytic Geometry I (GT-MA1) (5 c.h.), MATH 224 Calculus and Analytic Geometry II (5 c.h.), and PHYS 221 General Physics I (4 c.h.), PHYS 221L General Physics I Lab (1 c.h.)) with a grade of C or better in each course in order to be eligible to apply for admission to the BSE or BSIE as a sophomore. Admission is not guaranteed as priority is given to students with the highest GPA's.

The BSE program has the following educational objectives and outcomes, which have been approved and are reviewed regularly by the BSE Advisory Board.

BSE Program Outcomes

The BSE program is designed so that students graduate from the program with the following abilities and knowledge:

1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

BSE Educational Objectives

During the first few years after graduation, BSE graduates should be able to:

- During the first few years after graduation, BSE graduates should be able to:
- Identify root causes and solve engineering problems.
- Function well as individual contributors and on multidisciplinary teams,
- Obtain jobs of increasing responsibility applying engineering skills and knowledge to a wide range of problems in a wide range of industries,
- Continue their education at the graduate level,
- Obtain additional engineering certifications,
- Design new and improve existing mechatronic systems.

Outcomes Assessment Activities

The BSE and BSIE programs and the courses in each program are designed to support the Program Outcomes listed for each degree. Each program has an Advisory Board that meets annually and the input from those Boards is used to revise the programs. The Department also uses the following assessment activities:

- During the final term of study, all engineering students are required to demonstrate their ability to apply and integrate the skills and knowledge learned in the program by producing a capstone engineering design project. This project must incorporate subject material covered in two or more courses in the student's major, involve knowledge or skill not learned in a class thus demonstrating the student's ability to engage in life long learning, involve reflection on the impact of the proposed solution in a global and societal context, and be presented in written and oral reports to demonstrate the student's communication skills.
- All senior engineering studies are encouraged to take the Fundamentals of Engineering (FE) exam administered by the Colorado State Board of Registration for Professional Engineers. The Department periodically sets goals for and reviews the section-bysection performance of students on the FE. The results are used to identify areas of the curriculum that may need improvement.

Specific Program Requirements

Students are required to have earned a cumulative GPA of 2.000 or better in required EN courses.

Course	Title	Credits
Required EN Courses		
EN 101	Introduction to Engineering	2
EN 103	Problem Solving for Engineers	3
EN 107	Engineering Graphics	2
EN 211	Engineering Mechanics I	3
EN 212	Engineering Mechanics II	3
$\begin{aligned} & \text { EN } 231 \\ & \& 231 \mathrm{~L} \end{aligned}$	Circuit Analysis I and Circuit Analysis I Lab	5
EN 260	Basic Electronics	3
EN 263	Electromechanical Devices	3
EN 321	Thermodynamics	3
$\begin{aligned} & \text { EN } 324 \\ & \& 324 \mathrm{~L} \end{aligned}$	Materials Science and Engineering and Materials Science and Engineering Lab	4
EN 343	Engineering Economy	3
$\begin{aligned} & \text { EN } 360 \\ & \& 360 \mathrm{~L} \end{aligned}$	Control Systems I and Control Systems I Lab	3
$\begin{aligned} & \text { EN } 361 \\ & \& 361 \mathrm{~L} \end{aligned}$	Digital Electronics and Digital Electronics Lab	4
$\begin{aligned} & \text { EN } 362 \\ & \& 362 \mathrm{~L} \end{aligned}$	Introduction to Mechatronics and Mechatronics Lab	3
$\begin{aligned} & \text { EN } 363 \\ & \& 363 \mathrm{~L} \end{aligned}$	Virtual Machine Design and Virtual Machine Design Lab	3
EN 375	Stochastic Systems Engineering	3
EN 430	Project Planning and Control	3
$\begin{aligned} & \text { EN } 441 \\ & \& 441 \mathrm{~L} \end{aligned}$	Engineering of Manufacturing Processes and Engineering \& Manufacturing Proc Lab	4
EN 443	Quality Control and Reliability	3
$\begin{aligned} & \text { EN } 460 \\ & \& 460 \mathrm{~L} \end{aligned}$	Control Systems II and Control Systems II Lab	3
$\begin{aligned} & \text { EN } 462 \\ & \& 462 L \end{aligned}$	Industrial Robotics and Industrial Robotics Lab	3
$\begin{aligned} & \text { EN } 473 \\ & \& 473 L \end{aligned}$	Computer Integrated Manufacturing and Computer Integrated Mfg Lab	3
EN 486	Senior Seminar	2
EN 487	Engineering Design	3
Other Required Courses		
MATH 126	Calculus \& Analytic Geometry I (GT-MA1)	5
MATH 224	Calculus and Analytic Geometry II	5
MATH 207	Matrix and Vector Algebra with Applications	3
MATH 337	Differential Equations I	3
$\begin{aligned} & \text { PHYS } 221 \\ & \& 221 \mathrm{~L} \end{aligned}$	General Physics I and General Physics I Lab	5
$\begin{aligned} & \text { PHYS } 222 \\ & \& 222 L \end{aligned}$	General Physics II and General Physics II Lab (GT-SC1)	5
ENG 101	Rhetoric \& Writing I (GT-CO1)	3
ENG 102	Rhetoric \& Writing II (GT-CO2)	3
CID 103	Speaking \& Listening	3
General Education		15
Math/Science Electives		3
Technical Electives ${ }^{1}$		3
Total Credits		130

${ }^{1}$ Technical electives must be chosen from an approved list or have the approval of an Engineering adviser.

Planning Sheet

Disclaimer. The Planning Sheet is designed as a guide for student's planning their course selections. The information on this page provides only a suggested schedule. Actual course selections should be made with the advice and consent of an academic advisor. While accurately portraying the information contained in the college catalog, this form is not considered a legal substitute for that document. Students should become familiar with the catalog in effect at the time in which they entered the institution.

Course	Title	Credits
Year 1		
Fall	Introduction to Engineering	2
EN 101	Problem Solving for Engineers	3
EN 103 (GT-MA1)	5	
MATH 126	Calculus \& Analytic Geometry (GT-MA	3
ENG 101	Rhetoric \& Writing I (GT-CO1)	3
General Education		$\mathbf{1 6}$
	Credits	

Spring		
EN 107	Engineering Graphics	2
MATH 224	Calculus and Analytic Geometry II	5
PHYS 221	General Physics I	4
PHYS 221L	General Physics I Lab	$\mathbf{1}$
ENG 102	Rhetoric \& Writing II (GT-CO2)	3
	Credits	$\mathbf{1 5}$
Year 2		
Fall		

EN 211	Engineering Mechanics I	3
EN 231	Circuit Analysis I	4
EN 231L	Circuit Analysis I Lab	1
MATH 207	Matrix and Vector Algebra with Applications	3
PHYS 222	General Physics II	4
PHYS 222L	General Physics II Lab (GT-SC1)	1
	Credits	$\mathbf{1 6}$
Spring	Engineering Mechanics II	
EN 212	Basic Electronics	3
EN 260	Electromechanical Devices	3
EN 263	Materials Science and Engineering	3
EN 324	Materials Science and Engineering Lab	3
EN 324L	Differential Equations I	$\mathbf{1}$
MATH 337	Credits	3
		$\mathbf{1 6}$

Year 3
Fall

EN 321	Thermodynamics	3
EN 343	Engineering Economy	3
EN 360	Control Systems I	2
EN 360L	Control Systems I Lab	1
EN 362	Introduction to Mechatronics	2
EN 362L	Mechatronics Lab	1
EN 375	Stochastic Systems Engineering	3
	Credits	$\mathbf{1 5}$
Spring		
EN 361	Digital Electronics	3
EN 361L	Digital Electronics Lab	1
EN 363	Virtual Machine Design	2

EN 363L	Virtual Machine Design Lab	1
EN 441	Engineering of Manufacturing Processes	3
EN 441L	Engineering \& Manufacturing Proc Lab	1
EN 443	Quality Control and Reliability	3
EN 460	Control Systems II	2
EN 460L	Control Systems II Lab	1
	Credits	$\mathbf{1 7}$
Year 4		
Fall	Computer Integrated Manufacturing	
EN 473	Computer Integrated Mfg Lab	2
EN 473L	Senior Seminar	1
EN 486	Speaking \& Listening	2
CID 103		3
General Education	Credits	6
Technical Elective	Project Planning and Control	3
	Industrial Robotics	$\mathbf{1 7}$
Spring	Industrial Robotics Lab	3
EN 430	Engineering Design	2
EN 462		1
EN 462L	Credits	3
EN 487	Total Credits	6
General Education		$\mathbf{3}$
Math/Science Elective		$\mathbf{1 8}$

